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SEQUENTIAL ARRAY ALGEBRA USING DIRECT SOLUTION OF EIGENVECTORS

PROBLEM OF SEQUENTIAL ARRAY EQUATIONS

The new computationally powerful array algebra technology unifying
the sciences of numerical analysis, mathematical statistics and modern
signal processing would become more flexible if t'he problem of sequential
array observation equations could be efficiently solved, Rauhala (1974
p 113, 1976 p 79 , 1977, 1978, 1979, 1980a, 1980b), Jancaitis and Magee

(1977), Snay (1978). 1In the il'lustrata've. case of three dimensions the
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sequential observation equations read NTIS GRARL
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where the array multiplications £ X o r = (£ - V)

are defined as

Ny 12 A3 A
(L-v) =TX}2°C8 .(F) .(9) . (X).. r=zta,.m
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The last set of observation equations consists of dot multiplications,

i.e., discrete direct observations of parameters &  so that in
1 Tl )
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the conventional monolinear notations where NZ‘
ol

treated as a long column vector the design matrix would be diagonal.

) NE Ay Ny 5 is

The above observation equations result in the normal equations

7 - 5 - W (3)
~ + o B X B+ » X =
Pl 'ﬁ”’{;‘ 4 X5 ? ” N
2

_ 2
where the dot multiplications & are denoted Do X .

D N
ofs Bl

We now assume that the symnmetric square matrices ,9’.5/5 are brought to

satisfy the following spectral decompositions, for example by using the

parameter transformations of Buchanan and Thomas (1968),

A, = RTx, R 3,=-5"m3,s =775, 7
A = R R Bz S A4S Coz 70 T
A= R otp R Ba: S, Co= 7707,

(4)

Thus AR is the common orthonormal eigenmatrix of all matrices Aoand_f)r

are its counterparts of matrices 8,') [ = 42,0 D . The

]

diagonal matrices &(, R . contain the eigenvalues of matrices 4., 8.,
[ Nary 22%,9

The present paper is focused on the computational solution of
.equation (3) under the spectral decomposition of (4). The derivational
part of the solution is rather straight-forward, i.e., premultiplications
with R , post multiplications with Srand the "back" multiplications

with Trresult in the solution of the diagonal system by

T 7_7‘

-
REST = Hw Rws” (5)

- s 0 & I/ (‘ .( ve [ 2 3
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Now the inverse transformations with ki-_s' 7" result in the solution
familiar from the filtering theory of signal processing

7 r
2‘ = RT(H» R'vc.s’j.f. (6)

In terms of signal processing A/ can be called "transfer function",

In terms of the general theory of linear estimators and matrix inverses,

»

Rauhala (1980b), estimator X is unbiased if all //,s/;w; z0.

For biased or nearly biased parameters , A”'Ns —» oo , the
~
bias, variances and the norm of & can be minimized through the

pseudo-inverse solution simply by putting /)/-'/‘;/- = 0 for A/'/V'-a of .
3 J

All of these solutions of normal equations satisfy the least squares

criteria
v i + DY)+ - //t,;.// * W Vaf) = o, 7

In several applications of array algebra the dimensions »n,,,,4

A
of the array X can range several hundreds so that the array solution

of millions of parameters is split into the problems of solving three

small orthonormal eigenmatrices ®,S,7 . After these matrices are

known the array multiplications of equation (6) can be performed along
the lines of the computer program presented in (Rauhala, 1980a). The

remainder question of this paper handles the computational probicw of

solving for matrices %, _f' 7.
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DIRECT SOLUTION OF EIGENVECTORS

The computation of eigenvalues 4;of matrixni and the corres-
ponding eigenvectors is presently dominated by iterative methods putting
severe restrictions on fhe dimensions and conditioning of the matrix.

Further the iterative solutions do not guarantee the orthonormality of

matrices #,, &K, in A = J?,r/) Ry .

an nn AN N»n
In the new d'u:ect approach of finding R, ’ z‘we split the eigen-
value problem in two separate parts, i.e., we assume that the eigenvalue
)‘- is known or computed a priori. We are seeking direct solutions for
the corresponding eigenvectors X ) y.r as the non-homogeneous

”ll "ﬂ
solution of the consistent systems

ﬂ‘- X‘- s 0 (83)
r -
Y A =9 (8b)
where .
A = P-4, 7 . (%)

The solutions are found using the general theory of matrix inverses,

Rauhala (1980b), by

P

X eI - Alr) «, (10a)

gz & (-4 A1),
(10b)

Vectors &, a‘zrare arbitrary and the g-inverse /Q‘?needs to satisfy
the condition A, 4;’,1,- = A; in order to have (10a), (10b) as the

solutions of (8a), (8b).
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Because by the definition &e?/@y/ = &t /B -ArX/ =

the maximum rank of matrix A7p is #s#-/ . We perform the rank

s
factorization of A as
A, A,
~ = rr  liar
~n y 73 3
s N, ]

o

(11)

where the submatrixﬁ:3 has to satisfy the condition 53= 2 »9:'4, .

This condition can be derived by eliminating the "independent' parameters

Z, from the system

%
A, Z, v+ Az Z, = W

by
Z, = A (w - 72)

Substitution into the linearly dependent part of (12b), yields
- -

0'. 4" - ”‘ﬂ:i’ .

The computational rule of finding ﬂl’of (11) is simply

-l
9 (o
ﬂ, = 'r?:- 7,0~
4 (2]
~n N, 7N,
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because it satisfies the condition 7 '9,’ :ﬂ' = ia’ yielding
-ty O -4,
4.’/9‘- = rz Po Ay —p Z‘”"’ % = ? ‘I ? (16a)
Lo O | L ar,0v]
a4 = —I,O—- o~ r-amte | 2,9
: 7 —“”’ 0 1 (IL/) —_&”’ol 0.';[”.:: . (16b)

The unnormalized eigenvector solutions become now from (10a), (10b)

-ﬂ-' _ ar
X; = °'5'z ’ &)y = & (Fya
n ! .
/X4 / S ElR, (17a)

o
e -’ - :
7 = [" o Ra 5 4yt /:I (2-4)/' - 3;-,('94):;/',

where the #-+~ last terms ofll,‘, (Q’;re chosen to be ones. The normalized
”,y “"wn
eigenvectors become
X, = (r-r+ zé(.)/) e Ly = -4, Z,
% = 7 e ry
(18a)

N s mn,

. ” "/4 r r y

b = ln-r+ E 4,2 [4 roes]| #7-Z, 8

7 i v):) 3 %% , WL TR
(18b)
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By repeating these solutions for all eigenvalues ),'/ Py LR, 77 the

sought orthonormalized matrices 2’ J & of ,9 = g"' A 2& become

ar
A o Ty
[x”)a’... ,\;J ) 3% = ?&r
ol . (19)

For a symmetric matrix X, e R, =2 &,

OPERATION COUNT OF THE DIRECT SOLUTION

Computation of R for a symmetric non-sparse matrix requires in

3

the order of r’:' ” operations (scalar multiplications and additions)

for each = , OT totally /)’o erations. In our array algebra
n- r P
] I

solution thls operation count is by no means prohibitive as we are solving
for A= 2,0y = ~»3 parameters. In fact, the three-dimensional

array multiplications using the general non-sparse matrices &, J, 7~ in

&y

equation (6) require the same magnitude of » Yoperations, Rauhala (1976,

1979, 1980a), Blaha (1977).

I1f the spectral decomposition of the <!, n-t leading partition

ap T Ne o=

r
of A7 were known as & A R and the same partition could be
used for all(l‘)"then we could perform the one-time multiplication.
As “) 4 ~r ~ ol ™ .

z e R X and each (&), = R (4 -4yJ) Z, would require
Ml A, a0

s7*operations or totally R would require ﬂ"Operatmns. This is the
same magnitude of operations required for a two-d1mens1onal array multi-

plication of the type of equation (6).

In several practical applications matrix A& is banded and only a
an
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few last terms of A4, are non-zeroes so that each &)‘.requires 61/)
operations or totally 62/;“ operations forﬂ§ , where & is the bandwidth
(usually é< 5 for symmetric matrices). In some practical experiments
the author performed the double precision orthonormalization of a

300 X 300 tridiagonal matrix in a CPU time of a few seconds using a

minicomputer.

APPLICATIONS

The above array solutions were used for simulations of non-
separable filters of finite element solution of regularly gridded data,
Using these filters or impulse responses a rigorous least squares solution
of 601 X 1201 > 720 000 nodes was convolved in a CPU time of less than

one minute and using less than 30 K bytes of the minicomputer core space.

For the non-stationary case of irregular gridded data the above
derived array solution (6) removes some restrictions of the one-batch
array equations. For example in digital terrain, geoid, gravity anomaly
etc. modeling using the method of array algebra finite elements the
observed nodes are allowed to have completely arbitrary locations and
a priori weights. Simultaneously the operators R, .S, 7 can be brought

to exhibit a structure of generalized fast transforms, (Rauhala (1980a),
so that R, s, 7° are never explicitely computed (requiring no core space)
and multicplication 05 :‘: requires less than /a&nv 77 operations, i.e.,

’ .

the total solution of A/ = Aty = /;3 parameters requires the magnitude of

N operations.

The above very fast array solution can exhibit such general
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properties which seem to be at odds with the restrictive nature of 'each
sequential array batch: For example, the math model can contain equality
constraints, discontinuities and break-lines and single point constraints
(minimum, maximum, saddle etc. points). Furthermore, the math model
allows automatic bridging of '"smooth areas" (sparse data sampling) or

a priori identified "blunder areas' (sampled data with zero a priori
weights). Those features allow introduction of batches of fill-in samples
replacing large areas of blunderous observations, batches of overlapping
data samples, etc. Thus the math model can be used for modeling even
"pathologically" difficult and ill-behaving empirical functions with
proper computational efficiency both in the stages of forming the data

base and in the retrieval and usage of the stored data base.

The above and many other applications of the sequential array
algebra warrant detailed investigations. For example some carefully
designed net adjustment problems of large dimensions are within the

capabilities of the above array solution.
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